Received: June 6, 1977

REVIEW

ORGANIC SYNTHESIS WITH FLUORINE-18 A CONCISE SURVEY

J.P. DE KLEIJN

Vrije Universiteit, Dept. of Organic Chem. c/o Radionuclidencentrum, De Boelelaan 1083a, Amsterdam, The Netherlands

SUMMARY

The published methods and results in the synthesis of 18 F-labelled compounds are presented after a general introduction in the field of 18 F-labelling. The hot atom chemistry of 18 F and the applications of 18 F in other chemistry fields are mentioned in brief.

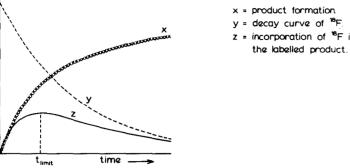
INTRODUCTION

The established discipline of synthetic and physical organic fluorine chemistry is concerned with the isotope fluorine-19. Naturally abundant fluorine is monoisotopic as contrasted with hydrogen, carbon and many other elements that have stable isotopes which are useful in all kinds of investigations. A consultation of the Chart of the Nuclides reveals that the artificially produced isotopes of fluorine are short-lived, radioactive ones (figure 1).

F	F 17	F 18	F 19	F 20	F 21	F22	
18.99840	66.6 s	1.8 h	natural	11,4 s	4.4 s	4.0 s	
		β⁺ 97•/₀	abundance				
	β⁺	E.C. 3%	100%	β", γ	β ⁻ , γ	β", γ	

FIGURE 1. ISOTOPES OF FLUORINE.

Considering the respective half-lifes it is obvious that organic synthesis with fluorine isotopes other than fluorine-19 deals with fluorine-18. The generally accepted value for its half-life is 109.72 ± 0.06 minutes [1, 2]. The decay of ¹⁸F to ¹⁸O is quite simple: 3% of the transformations involve electron capture and 97% are by positron emission, the 511 keV annihilation radiation from which is easily detected, but ¹⁸F emits no characteristic gamma radiation.


Since the discovery of 18 F by Snell in 1937 [3] this isotope has been used more and more as a tracer for fluorine in chemical, biological and medical studies.

Due to the short half-life 18 F-labelled compounds are not commercially available from stock, but the isotope 18 F can be produced with relative ease in both nuclear reactors and accelerators. A discussion about the nuclear reactions leading to 18 F is beyond the scope of this paper, the original literature is recommended [4-7]. Reactor-production of 18 F always leads to a solution containing 18 F⁻-ions, but the accelerator irradiation may yield 18 F-labelled F₂, NOF, HF, CIF, SF₆, SF₄, or COF₂ at the end of the bombardment [6, 8, 9].

Isotopic exchange procedures occupy a prominent place in the field of labelling organic compounds with hydrogen or halogen isotopes. 18 F-labelling cannot be achieved by this direct route because of the very high dissociation energy of the C-F bond (465 kJ/mol; cf. 215 kJ/mol for the C-I bond).

Most conventional methods of fluorination involve large molar excesses of the fluorinating agent and long reaction times. It is evident that these methods cannot be readily adapted to the production of 18 F-labelled compounds because, as a result, the radiochemical yields would be extremely low.

The short two hour half-life of 18 F means that the 18 F-chemist has no more than one (long) working day for the experiment. After six half-lifes only 1-2% of the starting activity is left. The chemist must choose and develop rapid reactions, rapid separation and purification methods and must seek ways of accelerating useful reactions. The discrepancy between the reaction times required in the synthesis of fluoro-compounds on the one hand and the 110 min half-life of 18 F on the other hand forces chemists to modify existing procedures or to devise new syntheses.

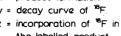


FIGURE 2 : Kinetic relation between incorporation and decay of fluorine-18.

The formation of the desired ¹⁸F-labelled fluoro-compound during the chemical reaction competes with the radioactive decay of 18 F (see figure 2). Reaction times longer than tlimit only lead to less net activity in the product.

The drawbacks just mentioned apply to a smaller degree in (in)organic isotope exchange studies [10-12] or analytical investigations with the help of fluorine-18 [13,14].

METHODS FOR THE INCORPORATION OF FLUORINE-18 IN ORGANIC COMPOUNDS

All compounds with a $C^{-18}F$ bond which appeared in the literature up to August 1977 are compiled in the following three tables. One should notice that fluorinated amino acids and other physiologically active compounds are overrepresented. This stems from the fact that 18 F properties are very suitable for radiopharmaceutical research. A review article on the preparation, pharmacology and design of 18 F-labelled organic compounds of biomedical interest recently appeared in the literature [15].

Table I lists the ¹⁸F-labelled compounds, prepared via a nucleophilic action of the ¹⁸F⁻-ion. Displacement of a halogen atom or oxygen function is one of the most widely used methods of preparing fluoro-compounds. When dealing with ¹⁸F one has to look for favourable conditions such as a suitable leaving group, an activated carbon-position or enhanced chemical reactivity of the 18 F-ion.

The incorporation of 18 F into an aromatic system is accomplished in most cases by the Balz-Schiemann reaction. Table II gives the results. The introduction of 18 F is done by exchange labelling of a aryl diazonium tetrafluoroborate precursor with a solution of 18 F⁻-ions [32, 33, 35, 37-43] or in a heterogeneous system [34, 44]. Another method is the introduction of 18 F in an earlier stage, viz. the diazotisation of an aromatic amine in the presence of LiB 18 F₄ [36, 38].

The incorporation of 18 F into an aromatic ring by the Balz-Schiemann reaction is very inefficient from a radiochemical point of view. The maximum possible (decay-corrected) radiochemical yield is only 25%.

Table III presents some other ¹⁸F-introducing agents and their applications. Today many sophisticated fluorine-introducing agents are available for synthesis. However, the labelling of these agents in a short period of time starting with the simple forms of ¹⁸F inherent in reactor-or accelerator-production is a considerable problem.

TABLE I

INCORPORATION OF FLUORINE-18 BY NUCLEOPHILIC DISPLACEMENT

¹⁸ F-LABELLED COMPOUND	FLUORINATING REACTION	REFERENCES
ethyl 2-fluoroacetate*	KF + RC1	4
	(P)F + RBr	16, 17, 18
ethyl 2-fluoropropionate	KF + RBr	19
	$(C_2H_5)_4NF.2H_2O + RBr$	20
	(P)F + RBr	21
	·	22
ethyl 2-fluorohexanoate [*]	PF + RBr	17
ethyl 2-fluorovaleriate	(P)F + RBr	18

TABLE I. (cont.'d)

¹⁸ F-labelled compound	fluorinating reaction	references
ethyl 2-fluorotetradecanoate*	$(\mathbf{P})\mathbf{F} + \mathbf{RBr}$	16, 17
monofluoroacetamide	(P)F + RBr	17
fluoro methylnitrile	(P)F + RBr	16
2-fluoroethanol**	KF + ethylene carbonate	23
	(P)F + 2-bromoethanol	16, 17, 24
3-fluoropropanol	KF + propylene carbonate	23
1-fluoropropane	F-ion on carrier + RI	25
l-fluorohexane	$(C_{2}H_{5})_{4}NF.2H_{2}O + RBr$	20
	(P)F + RBr	21
CC1 ₃ F	$AgF + CC1_4$	26
CC1 ₂ F ₂	$AgF_2 + CCl_3F$	26
benzylfluoride	$(C_2H_5)_4$ NF.2H ₂ O + RBr	20
	(P)F + RBr	21
acetylfluoride	$(\mathbf{P})\mathbf{F} + \mathbf{RC1}$	21
benzoylfluoride	\mathbf{P} F + RC1	21
3-fluoro-p-menthane	KF + ROTos	23
6-deoxy-6-fluoro-	$(C_2H_5)_4$ NF.2H ₂ O + ROTos,	27
α-D-galactopyranose	followed by hydrolysis	
3,5-difluoro-L-tyrosine	$KF + RI_2$	28
fluoro-ocytocin	$KF + RI_2$	28
cholesteryl fluoride	AgF + RI	29
	F-ion + RX	30
21-fluoropregnelolone-3-acetate	KF + RI	31
21-fluoroprogesterone	KF (18-crown-6) + ROSO ₂ CH ₃	31a
2,4-difluoroestrone	KF + RI ₂	28
4-fluorotestosterone	KF + epoxide, -H ₂ O	28

 \star The corresponding salts were also obtained, ref. 16, 17.

xx 2-fluoroethanol-¹⁸F was also obtained by reduction of ethyl 2-fluoroacetate-¹⁸F, ref. 17.

(P)F stands for polymer supported fluoride ion.

34	6
----	---

TABLE II

INCORPORATION OF FLUORINE-18 BY THE BALZ-SCHIEMANN REACTION	INCORPORATION	OF	FLUORINE-18	ΒY	THE	BALZ-	-SCHIEMANN	REACTION
---	---------------	----	-------------	----	-----	-------	------------	----------

18 _F -LABELLED COMPOUND	REFERENCES
fluorobenzene	32, 33
p-fluoro-benzoic acid	32, 33, 34
-anisole	32
-nitrobenzene p-fluoro-biphenyl	33 33
o-fluoro-benzoic acid	32
-anisole	33
-chlorobenzene	32
m-fluoro-chlorobenzene	33
-acetanilide	33
2-fluoronaphtalene	33
1,3,5-tribromo-4-fluorobenzene	33
p-fluorophenylalanine [*]	34,35,36
o-fluorophenylalanine	36
m-fluorophenylalanine	34,36
3-fluorotyrosine	34,37
4-fluorotryptophan	22
5-fluorotryptophan	34,38
6-fluorotryptophan	34,38
6-fluorodopamine	39
5-fluoroDOPA	40,41,42
fluorohaloperidol	43

* L-p-fluorophenylalanine- 18 F was prepared by enzyme-catalyzed resolution of a racemic precursor [44].

TABLE III

INCORPORATION OF FLUORINE-18. MISCELLANEOUS

18 _{F-LABELLED} COMPOUND	FLUORINATING REACTION	REFERENCES
CH ₃ F	dast [★] + Ch ₃ oh	45
C ₂ H ₅ F	$dast^{\star} + c_2 H_5 OH$	45
HOCH ₂ CH ₂ F	DAST [*] + HOCH ₂ CH ₂ OH	45

TABLE III. (cont.'d)

18 F-labelled compound	fluorinating reaction	references
2-fluorouracil	F ₂ + uracil	46
5-fluorocytosine	2	8
2-fluoropurine		22
2-fluoroadenine		22
2-fluoro-2-deoxy-D-glucose	F ₂ + triacetyl glucal	9
3-fluoro-3-deoxyglucose	DAST [*] + ROH, followed by	47
	hydrolysis	
3-acetoxy-5-fluoro-6-hydroxy- cholestan	BF ₃ + epoxide	30
3-acetoxy-5-hydroxy-6-fluoro- cholestan	BF ₃ + epoxide	30

* DAST= diethylaminosulfur trifluoride

REACTIVE ¹⁸F-ATOMS

The reactions taking place in the bombardment chamber of large accelerator machines are studied in a distinct specialized field of chemistry: the hot atom chemistry.

Several nuclear reactions result in recoiling 18 F atoms which possess kinetic energies greatly exceeding ordinary activation energies. These hot 18 F atoms can be thermalized by moderation through non-reactive collisional processes with inert molecules. Both hot and thermalized 18 F atoms show many complex reaction channels.

As we limit ourselves in this paper to glass-ware-chemistry, we draw only brief attention to the references no. 48-56 which provide easy access to the literature.

Beside all kinds of reactivity studies, hot atom chemistry is potentially useful in synthesis [48, 56]. Up to now only a few reports exist in the literature that have recorded attempts to explore its possibilities [57-61].

ACKNOWLEDGEMENT

The author is indebted to Dr. P.J. van der Jagt and Dr. B. van Zanten for their valuable suggestions.

REFERENCES

- C.M. Lederer, J.M. Hollander and I.Perlman, Tables of Isotopes,
 6th edn., John Wiley & Sons, New York, 1967, p. 160.
- 2 J.D. Mahony and S.S. Markowitz, J. Inorg. Nucl. Chem. 26, 907 (1964).
- 3 A.H. Snell, Phys. Rev. <u>51</u>, 143 (1937).
- 4 T. Nozaki, M. Iwamoto and T. Ido, Int. J. Appl. Rad. Isot. <u>25</u>, 393 (1974).
- 5 D.J. Silvester in Radiopharmaceuticals and Labelled Compounds, IAEA, Vienna, Vol. 1, 1973, p. 197.
- 6 Radioisotope Production and Quality Control, Techn. Rep. Series no. 128, IAEA, Vienna, 1971, p. 589.
- 7 P.K.H. Chan, G. Firnau and E.S. Garnett, Radiochem. Radioanal. Lett. 19, 237 (1974).
- 8 R.M. Lambrecht and A.P. Wolf in Radiopharmaceuticals and Labelled Compounds, IAEA, Vienna, Vol. 1, 1973, p. 275.
- 9 V.R. Casella, T. Ido and A.P. Wolf, J. Label. Comp. Radiopharm. <u>13</u>, 209 (1977).
- 10 R.T. Poole and J.M. Winfield, J. Chem. Soc. Dalton <u>1976</u>, 1557; references cited therein.
- 11 M. Azeem and R.J. Gillespie, J. Inorg. Nucl. Chem. 28, 1791 (1966).
- 12 M.F.A. Dove and D.B. Sowerby, in V. Gutmann (Editor), Halogen Chemistry, Vol. 1, Academic Press, London, 1967, p. 44-50.
- 13 G.D. Wals and H.A. Das, Radiochem. Radioanal. Lett. <u>26</u>, 353 (1976); references cited therein.
- 14 J.P. de Kleijn and B. van Zanten, J. Radioanal. Chem. 36, 587 (1977).
- 15 A.J. Palmer, J.C. Clark and R.W. Goulding, Int. J. Appl. Rad. Isot. 28, 53 (1977).
- 16 G.D. Robinson, Jr., J. Nucl. Med. 14, 446 (1973).
- 17 G.D. Robinson, Jr. in Radiopharmaceuticals and Labelled Compounds, IAEA, Vienna, Vol. 1, 1973, p. 423.
- 18 H.M.A. Karim, Rep. Jül-1145-NC (1974).
- 19 J.P. de Kleijn, H.J. Meeuwissen and B. van Zanten, Radiochem. Radioanal. Lett. 23, 139 (1975).
- 20 J.P. de Kleijn, R.F. Ariaansz and B. van Zanten, Radiochem. Radioanal. Lett. <u>28</u>, 257 (1977).
- 21 J.P. de Kleijn, J.W. Seetz, J.F. Zawierko and B. van Zanten, Int. J. Appl. Rad. Isot. 28, 591 (1977).

348

- 22 A.P. Wolf, D.R. Christman, J.S. Fowler and R.M. Lambrecht in Radiopharmaceuticals and Labelled Compounds, IAEA, Vienna, Vol. 1, 1973, p. 345.
- 23 A. Lemire, K.J. Schroader and M.F. Reed, J. Label. Comp. Radiopharm. 13, 211 (1977).
- 24 G.D. Robinson, Jr., J. Nucl. Med. 16, 561 (1975).
- 25 F. Schmidt-Bleek, G. Stöcklin and W. Herr, Angew. Chem. 72, 778 (1960).
- 26 J.C. Clark, R.W. Goulding, M. Roman and A.J. Palmer in Radiopharmaccuticals and Labelled Compounds, IAEA, Vienna, Vol. 1, 1973, p. 411.
- 27 D.R. Christman, Z. Orhanovic and A.P. Wolf, J. Label. Comp. Radiopharm. 13, 283 (1977).
- 28 C. Mantescu, A. Genunche and L. Simionescu in Radiopharmaceuticals and Labelled Compounds, IAEA, Vienna, Vol. 1, 1973, p. 395.
- 29 T. Nagai, J. Nucl. Med. 11, 217 (1970).
- 30 T. Nozaki, J. Label. Comp. Radiopharm. 13, 226 (1977).
- 31 R. Eng, G. Hinn and L. Spitznagle, J. Nucl. Med. 16, 526 (1975).
- 31a L.A. Spitznagle and C.A. Marino, J. Nucl. Med. 18, 618 (1977).
- 32 R.W. Goulding, A.J. Palmer and M.L. Thakur, Radioisotopy <u>12</u>, 1045 (1971).
- 33 T. Nozaki and Y. Tanaka, Int. J. Appl. Rad. Isot. 18, 111 (1967).
- 34 J.C. Clark, R.W. Goulding, M. Roman and A.J. Palmer, Radiochem. Radioanal. Lett. <u>14</u>, 101 (1973).
- 35 R.W. Goulding and A.J. Palmer, Int. J. Appl. Rad. Isot. 23, 133 (1973).
- 36 R.M. Hoyte, S.S. Lin, D.R. Christman, H.L. Atkins, W. Hauser and A.P. Wolf, J. Nucl. Med. <u>12</u>, 280 (1971).
- 37 A.J. Palmer, J.C. Clark, R.W. Goulding and M. Roman in Radiopharmaceuticals and Labelled Compounds, IAEA, Vienna, Vol. 1, 1973, p. 291.
- 38 H.L. Atkins, D.R. Christman, J.S. Fowler, W. Hauser, R.M. Hoyte, J.G. Klopper, S.S. Lin and A.P. Wolf, J. Nucl. Med. <u>13</u>, 713 (1972).
- 39 R.R. MacGregor, A.N. Ansari. H.L. Atkins, D.R. Christman, J.S. Fowler and A.P. Wolf, J. Nucl. Med. 15, 513 (1974).
- 40 G. Firnau, C. Nahmias and S. Garnett, J. Med. Chem. 16, 416 (1973).
- 41 G. Firnau, C. Nahmias and S. Garnett, Int. J. Appl. Rad. Isot. <u>24</u>, 182 (1973).
- 42 E.S. Garnett and G. Firnau in Radiopharmaceuticals and Labelled Compounds, IAEA, Vienna, Vol. 1, 1973, p. 405.
- 43 C.S. Kook, M.F. Reed and G.A. Digenis, J. Med. Chem. 18, 533 (1975).

- 44 R.W. Goulding and S.W. Gunasekera, Int. J. Appl. Rad. Isot. <u>26</u>, 561 (1975).
- 45 M.G. Straatmann and M.J. Welch, J. Nucl. Med. 18, 151 (1977).
- 46 J.S. Fowler, R.D. Finn, R.M. Lambrecht and A.P. Wolf, ibid. <u>14</u>, 63 (1973).
- 47 M.G. Straatman and M.J. Welch, J. Label. Comp. Radiopharm. <u>13</u>, 210 (1977).
- 48 F.S. Rowland, J.A. Cramer, R.S. Iyer, R. Milstein and R.L. Williams in Radiopharmaceuticals and Labelled Compounds, IAEA, Vienna, Vol. 1, 1973, p. 383.
- 49 J.A. Cramer and F.S. Rowland, J. Amer. Chem. Soc. <u>96</u>, 6579 (1974).
- 50 R.S. Iyer and F.S. Rowland, Chem. Phys. Lett. 21, 346 (1973).
- 51 R.G. Manning, E.R. Grant, J.C. Merrill, N.J. Parks and J.W. Root, Int. J. Chem. Kin. 7, 39 (1975).
- 52 R.G. Manning and J.W. Root, J. Phys. Chem. 79, 1478 (1975).
- 53 L. Spicer, J.F.J. Todd and R. Wolfgang, J. Amer. Chem. Soc. <u>90</u>, 2425 (1968).
- 54 F.S. Rowland in Hot Atom Chemistry Status Report, IAEA, Vienna, 1975, p. 139.
- 55 G. Stöcklin, ibid., p. 161.
- 56 A.P. Wolf, ibid. p. 271.
- 57 E. Lebowitz, P. Richards and J. Baranosky, Int. J. Appl. Rad. Isot. 23, 392 (1972).
- 58 P. Camner and K. Philipson, ibid., 22, 349 (1971).
- 59 M. Anbar and P. Neta, ibid., 14, 119 (1963).
- 60 M. Anbar and P. Neta, J. Chem. Phys. 37, 2757 (1962).
- 61 M. Anbar and P. Neta, ibid., 37, 1877 (1962).